A solution of the random eigenvalue problem by a dimensional decomposition method

نویسنده

  • Sharif Rahman
چکیده

This paper presents a dimensional decomposition method for obtaining probabilistic descriptors of realvalued eigenvalues of positive semi-definite random matrices. The method involves a novel function decomposition allowing lower-variate approximations of eigenvalues, lower-dimensional numerical integration for statistical moments, and Lagrange interpolation facilitating efficient Monte Carlo simulation for probability density functions. Compared with commonly-used perturbation and recently-developed asymptotic methods, no derivatives of eigenvalues are required by the new method developed. Results of numerical examples from structural dynamics indicate that the decomposition method provides excellent estimates of moments and probability densities of eigenvalues for various cases including closely-spaced modes and large statistical variations of input. Copyright 2006 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

Numerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact ‎solution

The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...

متن کامل

A Hybrid Solution Approach Based on Benders Decomposition and Meta-Heuristics to Solve Supply Chain Network Design Problem

Supply Chain Network Design (SCND) is a strategic supply chain management problem that determines its configuration. This mainly focuses on the facilities location, capacity sizing, technology selection, supplier selection, transportation, allocation of production and distribution facilities to the market, and so on. Although the optimal solution of the SCND problem leads to a significant reduc...

متن کامل

Adomian Decomposition Method On Nonlinear Singular Cauchy Problem of Euler-Poisson- Darbuox equation

n this paper, we apply Picard’s Iteration Method followed by Adomian Decomposition Method to solve a nonlinear Singular Cauchy Problem of Euler- Poisson- Darboux Equation. The solution of the problem is much simplified and shorter to arriving at the solution as compared to the technique applied by Carroll and Showalter (1976)in the solution of Singular Cauchy Problem. 

متن کامل

A numerical solution of Nagumo telegraph equation by Adomian decomposition method

In this work, the solution of a boundary value problem is discussed via asemi analytical method. The purpose of the present paper is to inspect theapplication of the Adomian decomposition method for solving the Nagumotelegraph equation. The numerical solution is obtained for some special casesso that demonstrate the validity of method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006